Supplemental Methods

Genomes

Seven yeast genomes feature in version 1.0 of YGOB (Fig. 1). The sources of these
data and annotations are as follows:

The Saccharomyces cerevisiae genome was completely sequenced by an international
consortium (Goffeau et al. 1997). The set of 5516 S. cerevisiae protein-coding genes
used in YGOB was curated in our laboratory by S. Wong, D.R. Scannell and K.P. Byrne
and is based on the Saccharomyces Genome Database (SGD) (Christie et al. 2004)
release dated June 2004, except that (i) we excluded genes annotated as "hypothetical"
in SGD, and (ii) we rejected a small number of other S. cerevisiae genes that failed the
RFC test of Kellis et al. (2003) and for which we could find no experimental evidence, or
that were rejected by Brachat et al. (2003). "Mouse-over" information that appears for
S. cerevisiae genes in the YGOB display comes from SGD title lines.

S. castellii was sequenced to 4x coverage by Cliften et al. (2003) so the contigs from this
species are not complete chromosomes. We loaded S. castellii data into YGOB in a two-
step process. We first used the annotations and homology data provided by Cliften et al.
(distributed through SGD), but we found that a significant number of genes were either
not annotated or had incorrect coordinates in this distribution. We then completely re-
annotated the S. castellii genome using an in-house annotation pipeline, but we retained
the gene names used by Cliften et al. if the gene sequence was unchanged, and added
suffixes to indicate modified or newly-discovered genes. We also merged some of Cliften
et al.'s contigs into scaffolds in cases where two ends of the same gene were on
different contigs. This reannotation of the S. castelli genome will be described
elsewhere (D.R. Scannell and K.H.W., in preparation).

C. glabrata and K. lactis were sequenced completely by Dujon et al. (2004), and
A. gossypii was sequenced completely by Dietrich et al. (2004). We used the original
annotations for these genomes without modification. Mouse-over information that
appears for these species in YGOB comes from the GenBank annotation tags for each
gene.

K. waltii was sequenced to 8x coverage by Kellis et al. (2004), and the sequence
consists of hundreds of contigs linked together into ten scaffolds corresponding to its
eight chromosomes. The K. waltii tracks in YGOB represent the scaffolds rather than the
contigs, which means that some genes that are missing from the K. waltii track in YGOB
may not in fact be missing from the genome, if they lie in a gap between two sequence
contigs within a scaffold. YGOB uses the original annotation of Kellis et al. We have
noticed that intron-containing genes tend to be unannotated in this genome but have not
attempted to correct the problem.

S. kluyveri was sequenced by Cliften et al. (2003) to 4x coverage. The sequence
consists of relatively short contigs that have not been joined into scaffolds. YGOB uses
the annotation provided by Cliften et al. and distributed through SGD. We did not try to
improve the S. kluyveri annotation in the same way that we did for S. castellii.

Rvrne and \Wnlfe Siinnlemeantal Methnds



Genome Editing

The first draft of the YGOB dataset was made in 2003 and included only the genomes of
S. cerevisiae, S. castelliiand S. kluyveri, with homology assignments taken directly from
Cliften et al.'s (2003) annotation. S. kluyveri was included because at that time it was the
only pre-WGD genome sequence available publicly, though its genome sequence is
fragmented into a large number of relatively small contigs. We subsequently reannotated
the S. castellii genome (see above), and revised the pillar structures accordingly.
Following this the entire browser dataset was curated manually, with any singleton loci
or regions of dubious syntenic alignment being examined by appraisal of BLASTP
scores, synteny and phylogenetic trees, to decide if they should be placed in another
(usually neighboring) pillar. The two pre-WGD species K. waltii and A. gossypii were
integrated in early 2004 using automated bi-directional best hit (BDBH) BLASTP
assignments of homology to S. cerevisiae (BLASTP cutoff E < 1e-5), followed by
genome-wide editing. All singleton pillars in the two new genomes were checked at this
stage and merged with other pillars where appropriate. Later in 2004 C. glabrata and
K. lactis were integrated, again using BDBH BLASTP (E < 1e-5). The C. glabrata
BLASTPs were done versus S. cerevisiae, and K. lactis BLASTPs versus K. waltii, to
maximize the number of one-to-one mappings in each case. This was followed by a
round of automated searching for instances of singleton pillars that could be merged with
adjacent pillars on the basis of a BLASTP hit (E < 1e-5) to at least one gene in the
adjacent pillar, provided there was no better hit and the assignment was also supported
by the syntenic context.

Finally, our laboratory inspected the whole dataset by systematically browsing along
each K. lactis chromosome, examining and editing pillars. We looked in particular for
instances where a species (or a track from a post-WGD species) had a gene in a
singleton pillar that was beside another pillar where the same species (or track) was
absent. This manual step revealed many genes with very weak BLASTP hits (E > 1e-5)
that are in fact orthologs or ohnologs on the basis of their chromosomal gene context,
transcriptional orientation, and (often) protein length. Rather than being ignored these
are perhaps some of the most interesting loci since they have most sequence, and likely
functional, divergence.

There remain a few groups of neighboring pillars in YGOB where each species has a
singleton gene that seem likely to be orthologs on the basis of their context and
orientation, but where none of the genes has any BLASTP hit (E < 1) to any of the
others. We have left these pillars unmerged until there is stronger evidence that these
are orthologous but very rapidly evolving loci. Similarly, ultra-fast evolving genes such as
S. cerevisiae YBR184W (Kellis et al. 2003), for which there is no evidence to assign
homology, also appear as singleton pillars in YGOB.

Rvrne and \Wnlfe Siinnlemeantal Methnds



Software & Algorithms

YGOB is a Perl (www.perl.org) driven application with a web interface. At its core is a
cross-genome data structure representing gene homology as pillars of orthologous or
paralogous relationships. A pillar corresponds to a set of homologous genes that can
appear as one column in the browser. Each pillar can maximally contain ten homologous
genes: two genes from each of the post-WGD species, and one from each of the pre-
WGD species, but slots in these pillars can also be left empty. Importantly, the pillar
does not contain any information about whether a gene in a post-WGD species
"belongs" to Track A or Track B in the browser; that is decided later by a series of
algorithms and will vary depending on the size of the window being considered and on
which species are selected. The pillars are implemented using Perl's Storable module
(www.cpan.org). Graphics are created using the GD package (www.boutell.com/gd).

The principal software design challenges faced in YGOB are encapsulated in four key
algorithms that are essential to the browser accurately displaying and assessing gene
order relationships within and among yeast genomes. Details of these four algorithms
are outlined below. Computer code is available on request (kevin.byrne@tcd.ie).

Before the four algorithms described below are used, YGOB requires an initial in-focus
gene around which information is processed. It gets the homology pillar for that gene
and, ignoring synteny at this early stage, places the homologs into tracks for each
genome (two tracks for each post-WGD species, and one track for each pre-WGD
species). For each of the neighboring genes upstream and downstream, until the
selected window size is filled, it calls each gene’s homology pillar and places any
homologous genes into the genome tracks. The algorithms thus begin with a set of
unaligned non-syntenic tracks, with gaps between nearby genes in genomes other than
the one under focus. It is worth noting that due to the unambiguous orthology and
chromosomal alignment in the pre-WGD species, their tracks are almost finalized even
at this point, though they will contain gaps that need opening.

Algorithm 1: Alignment of Chromosomal Segments

Alignment of chromosomal segments is not a challenge for the single tracked pre-WGD
species (because homology unambiguously decides placement in most cases). The
algorithm relates only to the placement of chromosomal segments from post-WGD
species, where a segment could appear on either track but in terms of genome evolution
should be on one in particular. The problem encompasses the accurate alignment of
chromosomal fragments with respect to the other post-WGD species, in tandem with
placement within their own genome. In practical terms this problem involves the
evolutionarily accurate placement of data from the pillars onto tracks.

The algorithm (a simplified representation of which is shown in Figure S1) places each
chromosome arm or contig alignment unit (AU), that features in a given browser
generated genome space and has at least two genes present, onto Track A or Track B,
and it does this for each post-WGD species. The algorithm is slightly different for
S. cerevisiae than for the other post duplication species. The principal difference is the
order in which AUs are placed onto Track A or Track B. The S. cerevisiae tracks are
placed in descending order of length (in the captured genome space) while the other

Rvrne and \Wnlfe Siinnlemeantal Methnds



post duplication species are placed after S. cerevisiae in order of the strength of an AU’s
clear agreement with the S. cerevisiae tracks. For each AU we calculate the degree to
which it clashes directly at any locus with AUs already placed on Tracks A and B. A
“clash” locus is any pillar containing two genes from the post-WGD genome we are
aligning, where one gene belongs to an AU already placed on a track and the other
belongs to the AU we are trying to place. These clear disagreements with already placed
AUs are the strongest indicator of which track an AU should be placed on. If an AU
clashes directly with neither track the algorithm examines whether placing it on a given
track will force a yet-to-be-placed AU to clash with a track in the light of current
alignments. If this too gives no signal then the tests whether placement of the AU on
either track would cause interlacing between AU fragments and tries to avoid this if
possible. In the rare case that there is no signal at all an AU will go onto Track A
arbitrarily — for example the first AU being placed. One modification with the non-
S. cerevisiae species is if there is no in-species clash signal, then the degree of
alignment with S. cerevisiae Track A or B is used to decide placement. If a user decides
not to use the S. cerevisiae genome then the first placed other post-WGD species takes
its role.

>

o EE— FE—EE—mE—E—EE
e EE BB —fEEE & & &—k1=a

Genomes
<

B

Genomes
=<

X2 [EHE] [o}—{o}——-oHo] [B] [B}—{s}—s] (8]
z ] [a}—{aHd] [d]
| ] || | ]
| | [ | [ | = [ |

Figure S1 Simplified representation of the algorithm for track aligning. The central track Y is a pre-WGD genome. (A) For
the first post-WGD genome X to be placed, alignment units (AUs, i.e. chromosome arms or contig fragments), are placed
on the two tracks X; and X; (representing the 1:2 post-WGD pattern) in descending order of size. The largest AU, marked
A, is arbitrarily placed on the top track. The next largest AU, B, is placed on the lower track because it clashes with the
already placed A at two loci (marked by orange caps). The third AU, C, is placed on the top track because placing it on
the bottom track would interlace (gray caps) it with the already placed B at every locus. The final two AUs, D and E, go on
the bottom track because they interlace with A on the top track, again at every locus. (B) Once the first post-WGD
genome has been placed, subsequent ones are aligned against it, with AUs placed in descending order of clear
agreement with a track. This can be thought of as the difference between the number of red caps and yellow caps on
each AU in tracks Z, and Z,. AU a is placed first because it agrees at every locus with track X; and only at one locus with
X2. AU b has one locus that exclusively agrees with X; but clearly should be aligned with X;. AU ¢ goes on X; as it agrees
with it at three loci and with X, only once, while AUs d and e are placed because of the clashes (orange caps) they have
with already placed AUs from genome Z.

Rvrne and \Wnlfe Siinnlemeantal Methnds




One other point to note is that some chromosomes have intra-genomic sister regions on
the same arm (e.g. the left arm of S. cerevisiae chromosome |V, which contains both
copies of “block 12” in Wolfe and Shields 1997) so it would be a mistake to assign such
a whole chromosome arm to Track A or B. We identify AUs that are prone to this
problem, either when they contain a “self-clash” pillar, i.e. if both slots in a pillar contain
genes from the same AU, or when more than 30% of genes from that AU are relatively
distant in their genome (>10 genes apart) but near in the browser (<5 pillars). These
AUs then skip the AU alignment process and genes from them are placed on the fly as
the tracks are filled.

Tracks are filled primarily with reference to the alignments that the above algorithm has
assigned. However in the case of single genes not on an AU, they are placed on the fly
so as not to clash with an aligned AU. In the case of "self-clash" AUs, genes are placed
on the track that nearby genes from the "self-clash" AU need to go on, so as to be on the
same track with each other, and not clash with any aligned AUs. Alternatively genes
from such AUs may be placed on the track opposite that which the most distant genes
from the "self-clash" AU need to go on so as not to clash with aligned AUs. These
signals are sufficient to accurately place these problematic chromosomal fragments.

This algorithm is heuristic and was elaborated by exploring test cases and problematic
regions of the genome. It embodies a set of rules whose end product is a visual
presentation of syntenic regions from multiple post-WGD species assigned to tracks in a
way that is identical to how we would assign them by eye.

Algorithm 2: Gap Opening

If on a genome track a gene is next to (though not necessarily in the next column as)
another gene from the same chromosome and it is within five genes of the first gene,
then we “open the gap” between these genes (Fig. S4). This is done by introducing into
the browser track any intervening genes from that genome and simultaneously
introducing into the other browser tracks any genes in those genomes that homology (as
stored in the data pillars) brings into view as the gap opens. That is, we insert the
intervening gene’s pillar into the browser at the gap point. The details as to how genes
from post-WGD species are assigned to tracks is as in Algorithm 1.

Gaps in pre-WGD species’ tracks are opened first, followed by those in post-WGD
species. The pillar being introduced can be either placed to the left or right of the gap,
which will not matter in the track being opened, but the number of pillars separating the
gap edges may be large and if opened at the wrong edge could incorrectly disrupt a
chromosomal fragment on a different track. Therefore each genome’s track is examined
with respect to any homologs in that genome that the new pillar is introducing. How
these relate, in terms of genome position, to the genes already in the track guides the
positioning of the pillar on the left or the right. In practical terms we look for the insertion
side that is beside a pillar that contains genes adjacent to one or more genes in the pillar
being inserted. The choice of edge is particularly unambiguous if it is flanked on both
sides by such “adjacent” pillars. There is also a check to ensure that no pillar that is
already displayed in the browser can be introduced a second time. Lastly gaps that are
in fact inversions are not opened and the algorithm used to identify inversions is set out
below.

Rvrne and \Wnlfe Siinnlemeantal Methnds



x

e Hie} 2ol EiHezHEs

[ window size |

Genomes
N <
B
%] [3] [3]

|:| syntenic gene

81
|:| non-syntenic gene
381a7

Genomes
=<
HiINIH

ZA / startof gap
A A
2 3
E

2 x| [E—E 7677 /H78[H79-8081}-{82

Q

5 v

© z

i7HasHsHeaHaaHaelHai—faol-asHeeHer]
| |

| window size |

Figure S2 Schematic representation of the algorithm for gap opening. (A) The process begins with the gene being
focused on, Y20. (B) Y20's homology pillar is expanded. (C) Neighboring genes in genome Y are added, up to the
selected window size of 3. (D) When the homology pillars are expanded, gaps (denoted by yellow triangles) are visible in
the genomes X and Z. (E) Gaps are opened creating a genome space with continuity in all genomes. YGOB will only
display the section of this genome space corresponding to the selected window size of +3 around the focused gene, Y20.
The gene Y96 is a homolog of the gene Z44 that gap opening reveals, but it has no synteny with the rest of the genes
visible in genome Y and so is colored gray. A gap in any genome at any locus means it has no homolog there.

Algorithm 3: Identifying Inversions

It was necessary to identify when a gap between genes that are not neighbors in a
genome, but have no intervening genes between them in the browser display (and so
would usually signify a gap opening), should not be opened due to this gap being an
inversion. We open up the gap to the inversion itself, but not through it.

For each gene X, its order in its genome is represented by a number Nx. This simple
counting number is used to help identify inversions. On a browser track imagine that we
have a gene X with the gene W next on its left in the browser and the genes Y and then
Z next on its right. So these genes appear on the browser track in the order W, X, Y, Z.
Then, the gap between X and Y is the left end of an inversion if Z is situated between X
and Y in their genome. If this is true, the product (Ny — Nx)(Ny — Nz) is greater than zero.
Similarly the gap between X and Y is the right end of an inversion if W is between X and
Y in their genome, and this is the case if the product (Nx — Ny)(Nx — Nw) is greater than
zero.

Rvrne and \Wnlfe Siinnlemeantal Methnds




For illustration, Figure 2B shows a three gene inversion in S. cerevisiae track A. The
start of the inversion is between the genes TMS1 and ARX1 and is marked by orange
connectors. In this example TMS1 (YDR105C) corresponds to gene X, ARX1
(YDR101C) to gene Y and STES5 (YDR103W) to gene Z. As required for the left edge of
an inversion YDR103W (Z) is located between YDR105C (X) and YDR101C (Y) in the S.
cerevisiae genome and if we use the genes’ systematic numbers as a proxy for order
number in the genome, it is clear that the product (101-105)(101-103) is greater than
zero.

It is worth noting that an inversion can only be identified in the syntenic context of the
other genomes and that is a relative object. An inversion seen in one species P when
the gene-in-focus is in species Q will be an equivalent inversion in Q if we focus on P.

Algorithm 4: Syntenic Scoring

To carry out genome-wide analyses to study the fate of genes in different lineages, we
developed a system for scoring the syntenic status of a locus in a track. By syntenic
status we mean whether the gene is present or absent in the track, and whether the
arrangement of nearby genes is conserved between the track under study and other
tracks. Pseudocode outlining the implementation of the algorithm can be seen in Figure
S3.

A locus is considered to have a syntenic presence in a given track, if a gene is present in
that track at that locus, and it has a gene on that track on at least one side, that is from
the same chromosome and is within 20 genes in their genome and within n pillars in the
browser (where n is a parameter as described below). A syntenic presence is scored as
a “1”. A non-syntenic presence, i.e. a gene that is present but out of syntenic context, is
scored as a “I".

A locus is considered to have a syntenic absence in a given track, if no gene is present
and there are bracketing genes on the chromosome either (i) within 20 genes in their
genome, and both within n pillars of the locus to be scored in the browser, or (ii) within 5
genes in their genome, and within 2n pillars of each other in the browser, but with no
intervening genes from another chromosome, or (iii) within 2 genes in their genome, and
within 2(n+1) pillars of each other in the browser, but again with no intervening genes
from another chromosome. A syntenic absence is scored as a “0”. A non-syntenic
absence (i.e., a gene that is absent but where the syntenic context does not meet any of
these criteria) is scored as a “?”.

We found n=6 to be the optimal value of n that maximized the number of scorable loci
without allowing misassignment of synteny, and used this for the analyses in Table 4.
This was found by manually examining (in the YGOB visual browser) the loci assigned to
the 1:1 paralog and 2:1 classes between S. cerevisiae and S. castellii as n was
increased. n=6 was the highest cutoff that returned no false positives when these two
loss classes were scored against the two scaffolding pre-WGD genomes (K. waltii and
A. gossypii) available at the time the optimization was carried out.

Rvrne and \Wnlfe Siinnlemeantal Methnds



$score; # variable that will hold syntenic score
$n = 6; # optimised as explained above

ForEach pre-WGD genome = S$pre {
ForEach gene = $g {
run YGOB focused on $g with window of 20 # generate syntenic YGOB track arrays
ForEach post-WGD genome = spost {
For AandBtracks = @track {

# the post-WGD track has a gene at its track position in $g's pillar

If elementof @track atthe $gpillaris Defined = $f {
Stest=0;

ForEach otherelementof @track = Se {

If $e and $f are onthe same chromosome

And $e and S$f are within 20 genes in their genome

And $e and $f are within $n pillars in YGOB {

Stest=1; last;

}

}

If $test==1 { $score = "1"; } # syntenic presence
Else { $score = "!"; } #non-syntenic presense

}

# the post-WGD track has no gene at its track position in $g's pillar

ElseIf elementof @track atthe $g pillaris UnDefined {
Stest=0;
ForEach elementof Gtrack from $g pillar toits right edge = se {
If Se is Defined
ForEach elementof @track from $g pillartoits left edge = $d
If $e and $d are on the same chromosome
And (1) within 20 genes in their genome 2And both within $n pillars of $g in YGOB
Or (2) have no genes in between them from another chromosome
And (2.1) are within 5 genes in their genome And 2*3$n pillars in YGOB
Or (2.2) are within 2 genes in their genome And 2* ($n+1) pillars in YGOB {
Stest=1; last; last;
}
}
}

}
If Stest==1 { S$score = "O"; } # syntenic absense

Else { $score = "2"; } # non-syntenic absence

Figure S3 Pseudocode for Algorithm 4: Syntenic Scoring.

Rvrne and \Wnlfe Siinnlemeantal Methnds



References for Supplemental Methods

Brachat, S., F.S. Dietrich, S. Voegeli, Z. Zhang, L. Stuart, A. Lerch, K. Gates, T. Gaffney, and P.
Philippsen. 2003. Reinvestigation of the Saccharomyces cerevisiae genome annotation by
comparison to the genome of a related fungus: Ashbya gossypii. Genome Biol 4: R45.

Christie, K.R., S. Weng, R. Balakrishnan, M.C. Costanzo, K. Dolinski, S.S. Dwight, S.R. Engel, B.
Feierbach, D.G. Fisk, J.E. Hirschman et al. 2004. Saccharomyces Genome Database (SGD)
provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related
sequences from other organisms. Nucleic Acids Res 32: D311-314.

Cliften, P., P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterston, B.A. Cohen, and M.
Johnston. 2003. Finding functional features in Saccharomyces genomes by phylogenetic
footprinting. Science 301: 71-76.

Dietrich, F.S., S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pohimann, P. Luedi, S.
Choi et al. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces
cerevisiae genome. Science 304: 304-307.

Dujon, B., D. Sherman, G. Fischer, P. Durrens, S. Casaregola, |. Lafontaine, J. De Montigny, C. Marck, C.
Neuveglise, E. Talla et al. 2004. Genome evolution in yeasts. Nature 430: 35-44.

Goffeau, A., R. Aert, M.L. Agostini-Carbone, A. Ahmed, M. Aigle, L. Alberghina, E. Allen, J. Alt-Mérbe, B.
André, S. Andrews et al. 1997. The Yeast Genome Directory. Nature 387 (Suppl.): 5-105.

Kellis, M., B.W. Birren, and E.S. Lander. 2004. Proof and evolutionary analysis of ancient genome
duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617-624.

Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E.S. Lander. 2003. Sequencing and comparison of
yeast species to identify genes and regulatory elements. Nature 423: 241-254.

Rvrne and \Wnlfe Siinnlemeantal Methnds



